Tag Archives: china compressor air

China wholesaler 2023hot Sale High Quality Multilingual Small Vibration High Efficiency 8 Bar Screw Air Compressor mini air compressor

Product Description

Product Description

Product Introduction
Power:37kw
Color:Blue and Gray
Specification:1800*1150*1000mm
Weight:800kg
Lubricating oil volume:20L
System language:Can be customized
Maximum recommended working altitude: 2000

Detailed Photos

Oil Separator

High quality and large volume oil gas separater, it can easure stable oil transmission and is not easy to block.

Large capacity battery

High impact strength and surface hardness, high temperature resistance, corrosion resistance and good stability.
 

High reliability

High reliability, few parts and no wearing parts, so it runs reliably and has a long service life. Generally, the design life of the main screw machine head is 15-20 years.
 

Product Parameters

Model OPM-37-8(F) OPM-37-8 OPM-55-8(F) OPM-55-10(F)
Model style Fixed Stype(No wheel) Two wheels Fixed Stype(No wheel) Fixed Stype(No wheel)
Screw air compressor Compression level Single stage  Single stage  Single stage  Single stage 
Exhaust pressure  8bar (116psi) 8bar (116psi) 8bar (116psi) 10bar (145psi)
Volumetric flow 4.5m3/min (157cfm) 4.5m3/min (157cfm) 6m3/min (210cfm) 5m3/min (175cfm)
Maximum towing speed (km/h) 20 20 20 20
Main engine lubricating oil (L) 20 20 20 20
Air supply valve size / quantity G1″*2 G1″*2 G1″ *2 G1″ *2
Maximum recommended working altitude 2000 2000 2000 2000
Diesel engines Rated power (kw) / speed (r / min). 37/1600 37/1600 55/2000 55/2000
brand name XICHAI XICHAI XICHAI XICHAI
Number of cylinders 4 4 4 4
Air inlet method Inhale naturally Inhale naturally Turbocharging & inter-air cooling Turbocharging & inter-air cooling
Displacement (L) 2.54 2.54 2.54 2.54
Engine lubricating oil quantity (L) 7 7 7 7
Fuel tank capacity (L) 100 100 100 100
Number of batteries 1 1 2 2
Machine parameters Long (mm) 1800 2600 1800 1800
Width (mm) 1150 1700 1150 1150
High (mm) 1000 1400 1400 1400
Weight (kg) 800 950 900 900
Wheel size * quantity / 175/65R14C*2 / /
Noise level (sound level) db 80 ± 3 80 ± 3 90 ± 3 90 ± 3
Exhaust emission standards Non-road country three Non-road country three Non-road country three Non-road country three

Model OPM-55-8 OPM-55-10 OPM-81-8 OPM-81-10
Model style Two wheels Two wheels Two wheels Two wheels
Screw air compressor Compression level Single stage  Single stage  Single stage  Single stage 
Exhaust pressure  8bar (116psi) 10bar (145psi) 8bar (116psi) 10bar (145psi)
Volumetric flow 6m3/min (210cfm) 5m3/min (175cfm) 8m3/min (280cfm) 6m3/min (210cfm)
Maximum towing speed (km/h) 20 20 20 20
Main engine lubricating oil (L) 20 20 120 120
Air supply valve size / quantity G1″ *2 G1″ *2 G1″ *2 G1″ *2
Maximum recommended working altitude 2000 2000 2000 2000
Diesel engines Rated power (kw) / speed (r / min). 55/2000 55/2000 81/2200 81/2200
brand name XICHAI XICHAI C ummins C ummins
Number of cylinders 4 4 4 4
Air inlet method Turbocharging & inter-air cooling Turbocharging & inter-air cooling Turbocharging & inter-air cooling Turbocharging & inter-air cooling
Displacement (L) 2.54 2.54 3.9 3.9
Engine lubricating oil quantity (L) 7 7 10 10
Fuel tank capacity (L) 100 100 200 200
Number of batteries 2 2 2 2
Machine parameters Long (mm) 2600 2600 3000 3000
Width (mm) 1700 1700 2000 2000
High (mm) 1800 1800 1900 1900
Weight (kg) 1100 1100 1800 1800
Wheel size * quantity 175/65R14C*2 175/65R14C*2 // //
Noise level (sound level) db 90 ± 3 90 ± 3 82 ± 3 82 ± 3
Exhaust emission standards Non-road country three Non-road country three Non-road country three Non-road country three

Packaging & Shipping

Our company cleans the inside and outside of the product before delivery, and then covers it with multi-layer industrial stretch film, bubble film, anti-collision column, and finally loads it with wooden pallets or wooden boxes.
 

 

Company Profile

 

ZheJiang CHINAMFG Machinery Manufacturing Co.,Ld base in LinYi ZheJiang . An AAA level enterprise with high-quality service and integrity in China.
OPPAlR as 1 of the world’s largest air compressor system suppliers, currently developing the following products: Fixed-speed Air Compressors, Permanent Magnet Variable Frequency Air Compressors, Permanent Magnet Variable Frequency Two-stage Air Compressors.4-IN-1 Air Compressors (lntegrated Air Compressor for Laser Cutting Machine)Supercharger, CHINAMFG Air Dryer, Adsorption Dryer, Air Storage Tank and related accessories.
 

 

Certifications

OPPAIR’s quality meets EU standards and has CE quality inspection certificate.
The testing agency is a recognized certification agency in Italy. After certification at our factory site, strict machine testing and CE certificate are issued. Authority, more trustworthy.
The pictures below are some quality and honor certificates of our company, which proves that CHINAMFG is a trustworthy manufacturer.

 

FAQ

 

Q1: Why do customers choose us?
A: ZheJiang CHINAMFG Machinery Manufacturing Co., Ltd. has a history of 16 years. We specialize in the production of screw air compressors. We warmly welcome your small trial orders for quality or market testing, and we offer special services.

Q2: Are you a manufacturer or a trading company?
A: We are a professional manufacturer with a large modern factory in HangZhou, China. OEM and ODM services can be accepted.

Q3: What is your delivery time?
A: 380V 50HZ We can ship within 10 days. It takes 20 days for other voltages, if you need to rush, please contact our sales staff in advance.

Q4: How long is the warranty period of your air compressor?
A: One year for the whole machine and 2 years for the screw host, excluding consumables.

Q5: How long can your air compressor last?
A: More than 10 years under normal use.

Q6: What are the payment terms?
A: T/T, L/C, Western Union, Credit Card, etc. We can also accept USD, RMB, EUR and other currencies.

Q7: Will you provide some spare parts for the machine?
A: Yes, of course.

Q8: Can you accept OEM orders?
A: Yes, with a professional design team, OEM orders are very welcome.

Q9: What kind of trade terms can you accept?
A: Available trade terms: FOB, CIF, EXW, etc.

Q10: How about the product packaging?
A: We strictly pack our products in standard airworthy boxes.

After-sales Service: 1year
Warranty: 1year
Lubrication Style: Oil-less
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Angular
Samples:
US$ 5693/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What is the impact of humidity on compressed air quality?

Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

1. Corrosion:

High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

2. Contaminant Carryover:

Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

3. Decreased Efficiency of Pneumatic Systems:

Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

4. Product Contamination:

In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

5. Increased Maintenance Requirements:

Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

6. Adverse Effects on Instrumentation:

Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China wholesaler 2023hot Sale High Quality Multilingual Small Vibration High Efficiency 8 Bar Screw Air Compressor   mini air compressorChina wholesaler 2023hot Sale High Quality Multilingual Small Vibration High Efficiency 8 Bar Screw Air Compressor   mini air compressor
editor by CX 2023-10-17

China wholesaler 1020cfm 29m³ /Min 23bar Stationary Diesel Screw Air Compressor for Deep Well Drilling with high quality

Product Description

Product Description

Diesel Stationary Screw Air Compressor

Water well drilling rig / Deep well special diesel engine

This series of products are designed for 115-254mm diameter water well drilling rig and related compressor stations for water well and Geothermal Engineering;
On the premise of adhering to the excellent characteristics of the mobile air compressor,the series of products have been upgraded and  optimized according to the characteristics of durable products and lower fuel construction;
The whole series of products adopt national III engine.
 

TECHNICAL SPECIFICATIONS
Type Screw Air Compressor
Item 29/23
Rated FAD 29 m³/min
Rate Pressure 23 bar
Diesel Brand Xichai Diesel
Engine Power 258KW
Compression stage 2 Stage
Whole Machine walking mode Stationary
Dimensions (L*W*H) 3100*1900*1950mm
Weight 3800KG

 

Detailed Photos

 

 

Packaging & Shipping

 

Company Profile

FAQ

Q1: Are you factory or trade company?
A1: We are factory. And we have ourselves trading company.

Q2: What the exactly address of your factory?
A2: Our company is located in Kaixuan Road ,Economic Zone HangZhou, ZHangZhoug, China

Q3: Warranty terms of your machine?
A3: One year warranty for the machine and technical support according to your needs.

Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.

Q5: What about the voltage of products? Can they be customized?
A5: Yes, of course. The voltage can be customized according to your equirement.

Q6: Which payment term can you accept?
A6: 30% T/T in advanced, 70% T/T against the B/L copy.

After-sales Service: 1 Year
Lubrication Style: Lubricated
Cooling System: Oil Cooling
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

Are there special considerations for air compressor installations in remote areas?

Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:

1. Power Source:

Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.

2. Environmental Conditions:

Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.

3. Accessibility and Transport:

Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.

4. Maintenance and Service:

In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.

5. Fuel and Lubricants:

For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.

6. Noise and Environmental Impact:

Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.

7. Communication and Remote Monitoring:

Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.

By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China wholesaler 1020cfm 29m³ /Min 23bar Stationary Diesel Screw Air Compressor for Deep Well Drilling   with high qualityChina wholesaler 1020cfm 29m³ /Min 23bar Stationary Diesel Screw Air Compressor for Deep Well Drilling   with high quality
editor by CX 2023-10-17

China best Skid Mounted Air Cooler Natural Gas Compressor with Gas Liquid Separated and Gas Recovery for CNG Wellhead lowes air compressor

Product Description

 

Product Description

Product function: It’s suitable For low-efficiency wells, test wells and remote wells wellhead natural gas recovery, local production of CNG. finished products The dry gas recovery skid can adapt to the characteristics and working conditions of well gas, the installation is simple, the period is short, and it is convenient for the rapid transfer of equipment.

The equipment flow diagram is as follows:
To better adapt to the field conditions of well gas recovery, the air intake separation system uses a high pressure separator to separate the gas and liquid level, using a liquid level controller to automatically control the liquid level; the pressurization system uses a hydraulic piston compressor, which can meet the intake pressure range of 3-20 MPa. Pressurization to 25 MPa, is more energy-efficient and leak-free than traditional mechanical pressurization, with low failure rate, high reliability and simple maintenance; the drying system adopts the A,B tower molecular sieve mode, which can be dried and regenerated simultaneously, with a maximum drying capacity of 2000 Nm3h, dew point is -55ºC; the control system is controlled by PLC logic control program to control each process such as separation, pressurization, drying, metering, instrument wind and so on, to realize unattended, automatic opening / stopping control; The filling metering system adopts mass Flowmeter, which meets the requirements of the state on metering, measuring range :1~4000 N m3/ h.

Application and parameter:
1.Gas intake separation system 2.Supercharging system 3.Drying system 4.Control system

5.Filling metering system 6.Fuel gas supply system 7.Housing system

Structure skid
Suction pressure 3-20Mpa
Discharge pressure 25Mpa
Gas treated ( Nm3/d) 20000-50000
Amount of treatment (t/d) 50
Main motor power 74kw
Noise  ≤75dBa
Size 9000mm*3000mm*3000mm
Total power 110KW
Fuel tank (L) 1000
Scope of measurement (Nm3/h) 1-4000
Weight ≈22t

 Product Advantage:
1. Skidding, high degree of integration, good flexibility, short construction period.
2.High degree of automation, centralized control points, low labor intensity.
3. Compressor adopts hydraulic piston type, which has the characteristics of wide intake range, energy saving, no leakage, very low failure rate and simple maintenance, so it can better adapt to the characteristics of large variation of wellbore pressure range.
4. No need to be equipped with water jacket CHINAMFG and pressure regulating equipment, safety risks are small, no throttling energy waste.
5.Use high pressure post dehydration, dehydration effect is good, conducive to product sales.
6. Recovery process equipment has strong adaptability to wellhead pressure and components, and the equipment input cost is small.

Company Profile

    HangZhou Qidakon Energy Equipment Co., Ltd was established in 2007 in HangZhou, ZheJiang Province, with a plant covering an area of 18,000 square meters. We are specializing in the R&D, production and sales of natural gas compressor series products, we adhere to the professional, fine, specialty, brand development of the road, to provide customers with the best overall technical solutions of high-tech enterprises. Professional production and manufacturing of natural gas compressor for CNG filling station and its service, professional production and manufacturing of natural gas compressor for oil and gas field natural gas extraction, recovery, gathering and transportation, storage and transportation and after-sales service, products and services have covered the CNG market all over the country and major domestic oil and gas fields, and radiation to Russia, India and other Belt and Road foreign markets.
     Qidakon company has always been committed to technological innovation. Its core business team has more than 30 years of working experience in compressor design and manufacturing, and led the drafting of the industry standard for hydraulic natural gas compressors for automobile filling stations (JB/T11422-2013). Obtained nearly 100 national patents, won the national technology innovation fund, and the first in the industry through the whole machine safety explosion-proof certification, by the Ministry of Science and Technology technology innovation fund committee identified as the national technology innovation products, with its “safety, energy saving, environmental protection, investment province, simple structure and many other advantages, in more than 20 provinces (autonomous regions) used, Market share is among the best, its technical advancement, reliability, economy and industry leading position by the national attention.
 Qidakon adheres to the enterprise mission of “gas melts everything, the way to secure the world”, adheres to the business philosophy of “customer first and sustainable development”, forms the core values of “loyalty and dedication, innovation and transcendence, truth-seeking and honest, fair sharing” and the enterprise spirit of “persistence, cooperation, gratitude, tolerance, dedication”, and is determined to become a global CHINAMFG brand of gas supercharging system.

 

Our Advantages

Professional R&D Team

 

About 100 technical patents
 

Industry standard setter

The national industry standard JB/T 11422-2013 setter, Hydraulic Natural Gas Compressor for Automobile Filling Station, drives the technical progress of the industry and leads the development direction of the industry.

Advanced production workshop and strict production process

     Sapare parts area                                                                                                                                                              Welding

     Assemble skiding                                                                                                                     Pre-factory commissioning

                                                                                                                                                     

   Strict quality control process and testing        
 

 

Certification and Honor

 

Partner & Cases

       CNG refueling station site

      Indian partner

 

After Sales Service

Service Purpose: Cusomer’s Satisfaction Our Pursuit

Pre- Sale Services
Provide installation and commissioning training for customer operators according to customer requirements. At the same time, organize and register product information and set up customer files.

Services on sale
The prodessional technical service engineer guides the installation and commissioning on the side or on the line. Andwarning of the possible failure of the equipment.

After-Sales Service
Timely and rapid response ,24-hour on-line service, provide lifelong maintenance.
 

FAQ

1.How long is the lead-time of production?

    30-60Days.

     
2. What is the configuration of the whole skid equipment?

   According to different customer needs to do the country’s explosion-proof certification and industry certification.

3.Which sea ports are supported for shipment?

  ZheJiang ,HangZhou or Other international ports in China.

4.What payment methods are supported?

  T/T, LC, D/P D/D ect.

5.What technical support is available?

   We provide basic parameters for customers’ reference before sales; conduct relevant certifications according to customers’ requirements during sales; be responsible for online debugging until successful operation after sales; arrange technicians to provide on-site guidance when necessary.

6.How long is the warranty period?

   For a period of 12 months from the date of commissioning at end customer site or 15 months from the date of receipt by purchaser , whichever is earlier.

 

 

After-sales Service: 24 Hours
Warranty: 12 Months
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Parallel Arrangement
Cylinder Position: Vertical
Customization:
Available

|

air compressor

What is the impact of humidity on compressed air quality?

Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

1. Corrosion:

High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

2. Contaminant Carryover:

Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

3. Decreased Efficiency of Pneumatic Systems:

Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

4. Product Contamination:

In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

5. Increased Maintenance Requirements:

Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

6. Adverse Effects on Instrumentation:

Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

air compressor

How are air compressors used in refrigeration and HVAC systems?

Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:

1. Refrigerant Compression:

In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.

2. Refrigeration Cycle:

The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.

3. HVAC Cooling and Heating:

In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.

4. Air Conditioning:

Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.

5. Compressor Types:

Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.

6. Energy Efficiency:

Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.

By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.

air compressor

How does an air compressor work?

An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:

1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.

2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.

3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.

4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.

5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.

6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.

Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.

In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.

China best Skid Mounted Air Cooler Natural Gas Compressor with Gas Liquid Separated and Gas Recovery for CNG Wellhead   lowes air compressorChina best Skid Mounted Air Cooler Natural Gas Compressor with Gas Liquid Separated and Gas Recovery for CNG Wellhead   lowes air compressor
editor by CX 2023-10-12

China Standard Wholesale Mini 12V Black Plastic Car Air Compressor air compressor lowes

Product Description

Mini car air compressor is perfect when unexpected roadside emergency happens. It is ideal for inflating car and bicycle tires, sports ballsand other inflating jobs. Our item is very easy to use. Just plug into your car cigarette lighter for power and slip the universal adapter over anytire valve and you are ready to inflate!
 

Specifications:
 

Main material: ABS + Copper
Product size: 16x19x9cm
Product color: Black
voltage:DC12V
Current:10A
Rated power:120W
cylinder diameter:Φ 22mm
Rated pressure:160psi 
Outflow:30L/min 
Inflate Time:approx 5min (0psi~30psi)
Air hose: 60CM
Power cord length:3m

                             

Packing: Color box
Qty/Ctn: 1pc/box, 12pc/ctn
Ctn size: 44×29.5x37cm
G.W/N.W: 16.5/14.5KG

Anma Group was established in HangZhou city ZHangZhoug province in 1992, subsidiary Corporation ZheJiang  Anma Industrial Co., Ltd. was established in 2003 and mainly responsible for research and development of automotive supplies, domestic and foreign sales. ZheJiang  branchhavea young team, full of vitality, good at learning, keep making progress.

Anma Group established its representative offices in USA, Italy and Dubai, in addition to its three factories: ZHangZhoug HangZhou factory covering an area of 258 acres, manufacturing Car interior and exterior decoration products; ZheJiang  factory covering an area of 120 acres, specialized in manufacturing auto parts series products, shock absorber and fuel pump products are SAIC-GM, HAFEI AUTOMOBILE designated supporting products; HangZhou factory covering an area of 68 acres, manufacturing automotive electronics products. More than 80% of our products are for export, listed in the key supporting export enterprises.

Anma industry is professional in the manufacture and sale of automotive supplies, automotive modified parts, auto parts. Products are exported to Europe and the United States, the Middle East, Southeast Asia, more than 40 countries and regions, currently has more than 350 agents and co-clients, mainly supply include AUTOZONE, TESCO, K-MART, ALDI, BDK, SUPERCHEAP and other internationally renowned chain stores, export business is growing. 2018 the company’s total export business amount over $86 million(about RMB650million). Group companies provide customers with convenient, fast, quality service as the principle, successively set up branches in HangZhou, HangZhou, HangZhou, HangZhou, HangZhou and other domestic cities, provide first-class quality service for customer. The company headquarters has large automotive supplies stores, directly provide professional services for the local and surrounding customers.

Group companies through the stable quality, reliable reputation and customer first principle to get the support of customers. Company’s purpose: people assets, customer oriented, Integrity first! Company’s philosophy: mutual benefit, develop together! Company’s direction: develop quality products, adhere to brand strategy, regulate the sales market. If the Anma Group is a large ship, the staff gathered from all corners of the globe are the water to carry the ship, the customer is the wind to promote the Anma Group sail forward. Anma Group knows that only share fate with employees and pursue with customers, can the company ride the wind and waves continue to move forward. Good business needs good talent, good people are eager to join a good team. In the process of Anma Group’s excellent competitiveness in the field of automotive supplies, we needs strong human resources guarantee; Inthe journey of realizing personal values and promoting career, we expect to be with you.

 

Cylinder Stage: Single Stage
Pressure after Air Exhaust: 160psi
MOQ: 1000
Power Supply: DC12V/24V
Production Time: 25-30 Days
Sample: Available
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What role do air dryers play in compressed air systems?

Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:

1. Moisture Removal:

Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.

2. Contaminant Removal:

In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.

3. Protection of Equipment and Processes:

By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.

4. Improved Productivity and Efficiency:

Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.

5. Compliance with Standards and Specifications:

Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.

By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.

air compressor

How are air compressors used in refrigeration and HVAC systems?

Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:

1. Refrigerant Compression:

In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.

2. Refrigeration Cycle:

The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.

3. HVAC Cooling and Heating:

In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.

4. Air Conditioning:

Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.

5. Compressor Types:

Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.

6. Energy Efficiency:

Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.

By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.

air compressor

Can air compressors be used for automotive applications?

Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:

1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.

2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.

3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.

4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.

5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.

6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.

7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.

When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.

Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.

China Standard Wholesale Mini 12V Black Plastic Car Air Compressor   air compressor lowesChina Standard Wholesale Mini 12V Black Plastic Car Air Compressor   air compressor lowes
editor by CX 2023-10-12

China Best Sales 14bar 14m3/Min Portable Air Compressor Screw Type The CHINAMFG with Good quality

Product Description

14bar 14m3/min portable air compressor screw type the screw compressor

Our double axle, diesel driven CHINAMFG range can be found in a wide variety of applications throughoout in China. This Popular range has been successfully ultilized on many major railway, building and road constructions projects. Hydro-electric, shipbuilding, mining, tunneling, and major land excavation projects are further examples of where CHINAMFG has been used to enhance productivity.

Featuring high capacities, high pressure variants the CHINAMFG double axle range combines top quality screw air ends with well proven CHINAMFG diesel engines and simple mechanical controls.

 

Model Free air delivery (m3/min) Working pressure
(bar)
max./min.Working speed(rpm) Engine Cylinders dimension(mm) Operational weight(kg)
120-14 12 14 2300-1270 CUMMINS 
6BTA5.9-C180
6 3525*1770*2230 3100
130-17 13 17 2200-1450 CUMMINS
6BTAA5.9-C205
6 3525*1770*2230 3500
170-13 17 15 2200-1400 CUMMINS
6CTAA8.3-C240
6 3525*1770*2230 3500
184-12 18.4 12 2200-1400 CUMMINS
6CTAA8.3-C240
6 3525*1770*2230 3500
202-10 20.2 10 2200-1400 CUMMINS
6CTAA8.3-C240
6 3525*1770*2230 3500
214-9 21.4 8,6 2200-1400 CUMMINS
6CTAA8.3-C240
6 3525*1770*2230 3500
239-7 23.9 7 2000-1400 CUMMINS
6LTAA8.3-C315
6 4210*1800*2631 4600
230-14 23 14 2000-1400 CUMMINS
6LTAA8.3-C315
6 4210*1800*2631 4600
250-12 25 12 2000-1400 CUMMINS
6LTAA8.3-C315
6 4210*1800*2631 4600
270-10 27 10 2000-1400 CUMMINS
6LTAA8.3-C315
6 4210*1800*2631 4600
290-9 29 8,6 2000-1400 CUMMINS
6LTAA8.3-C315
6 4210*1800*2631 4600
180-19 18 19 2200-1400 CUMMINS
6CTAA8.3-C260
6 4210*2040*2631 5100
215-21 21.5 21 2000-1300 CUMMINS
QSL8.9-C325-30
6 4210*2040*2631 4850
213-17 23.1 17 2000-1300 CUMMINS
QSL8.9-C325-30
6 4210*2040*2631 4850
300-17 30 25 1600-1100 CUMMINS
QSZ 13-C475
6 4710*2100*2570 5750
330-21 33 21 1600-1100 CUMMINS
QSZ 13-C475
6 4710*2100*2570 5750

Company Profile:

Glorytek Industry (ZheJiang ) Co., Ltd. is an integrated corporation specialized in manufacturing and exporting top quality drilling equipment and drilling parts for more than 20 years. We are supported and assisted by highly experienced R&D team and enginners that enable us to complete all the assigned projects successfully as per clients’ requirements.

Our factory covers an area of 250,000 square meters, construction area is about 150,000 square meters, having machining machinery, CNC processing center, friction welding machine, testing equipments etc. over 200 sets and more than 600 employees.

Our products have been exported more than 60 countries, including Australia, Russia, Soutn Africa, Zimbabwe, Malaysia, Indonesia, South Korea, France, Sweden, USA, Canada, Haiti etc.

After-Sale Service:

* Training how to instal the machine, training how to use the machine. 
* Engineers available to service machinery overseas.

FAQ
 

Q: Are you a factory or a trading company?
A: We are an integrated corporation specialized in manufacturing and exporting.

Q: What is your payment terms?
A: We can accept T/T,L/C.

Q:.What is your MOQ? How long is the delivery time?
A: Our MOQ is 1 sets. Normally for drill rig, the delivery time is about 25-30 days after receiving payment, the drilling tools would be about 15 days.

Q:. How long is the warranty?
A: The guarantee period for mainframe is 1 year (excluding the quick wear parts).

Q: Can we print my Logo on the products?
A: Yes, we can. We support OEM .

 

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: Diesel Engine
Cylinder Position: Horizontal
Structure Type: Closed Type
Installation Type: Movable Type
Customization:
Available

|

air compressor

How are air compressors employed in the petrochemical industry?

Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:

1. Instrumentation and Control Systems:

Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.

2. Pneumatic Tools and Equipment:

Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.

3. Process Air and Gas Supply:

Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.

4. Cooling and Ventilation:

Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.

5. Nitrogen Generation:

Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.

6. Instrument Air:

Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.

By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

What is the role of air compressor tanks?

Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:

1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.

2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.

3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.

4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.

5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.

6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.

Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.

China Best Sales 14bar 14m3/Min Portable Air Compressor Screw Type The CHINAMFG   with Good qualityChina Best Sales 14bar 14m3/Min Portable Air Compressor Screw Type The CHINAMFG   with Good quality
editor by CX 2023-10-11

China supplier 16bar All in One silent 4-in-1 Fixed Speed Screw Air Compressor arb air compressor

Product Description

 

16bar All In One Slient 4-in-1 Fixed Speed Screw Air Compressor

16bar All In One Slient 4-in-1 Fixed Speed Screw Air Compressor
Q1: Why do customers choose us?
A: ZheJiang CHINAMFG Machinery Manufacturing Co., Ltd. has a history of 16 years. We specialize in the production of screw air compressors. We warmly welcome your small trial orders for quality or market testing, and we offer special services.

Q2: Are you a manufacturer or a trading company?
A: We are a professional manufacturer with a large modern factory in HangZhou, China. OEM and ODM services can be accepted.

Q3: What is your delivery time?
A: 380V 50HZ We can ship within 10 days. It takes 20 days for other voltages, if you need to rush, please contact our sales staff in advance.

Q4: How long is the warranty period of your air compressor?
A: One year for the whole machine and 2 years for the screw host, excluding consumables.

Q5: How long can your air compressor last?
A: More than 10 years under normal use.

Q6: What are the payment terms?
A: T/T, L/C, Western Union, Credit Card, etc. We can also accept USD, RMB, EUR and other currencies.

Q7: Will you provide some spare parts for the machine?
A: Yes, of course.

Q8: Can you accept OEM orders?
A: Yes, with a professional design team, OEM orders are very welcome.

Q9: What kind of trade terms can you accept?
A: Available trade terms: FOB, CIF, EXW, etc.

Q10: How about the product packaging?
A: We strictly pack our products in standard airworthy boxes.
 

After-sales Service: 1year
Warranty: 1year
Lubrication Style: Oil-less
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Angular
Samples:
US$ 3310/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What are the advantages of using an air compressor in construction?

Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:

  • Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
  • Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
  • Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
  • Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
  • Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
  • Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
  • Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.

It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.

In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.

air compressor

How do you choose the right air compressor for woodworking?

Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:

1. Required Air Volume (CFM):

Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.

2. Tank Size:

Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.

3. Maximum Pressure (PSI):

Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.

4. Noise Level:

Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.

5. Portability:

Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.

6. Power Source:

Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.

7. Quality and Reliability:

Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.

8. Budget:

Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.

By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.

air compressor

What is the role of air compressor tanks?

Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:

1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.

2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.

3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.

4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.

5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.

6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.

Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.

China supplier 16bar All in One silent 4-in-1 Fixed Speed Screw Air Compressor   arb air compressorChina supplier 16bar All in One silent 4-in-1 Fixed Speed Screw Air Compressor   arb air compressor
editor by CX 2023-10-11

China manufacturer Energy Efficient 11kw 15HP Screw Type Oil Free Air Compressor air compressor price

Product Description

Product Description

Portable Compressor

1.Strong reliability: firm design ensures long – term reliability and durability of the equipment.
2.Easy maintenance: open door design, convenient for daily maintenance.
3.Low noise: Mobile locomotive hood and hood design have a strong noise reduction and attraction effect.

Details Images

Ground Engineering Drilling

Pneumatic rock drills,block cutters,dewatering pumps and hand-held pneumatic breakers. They are suited for stabilization projects on roads and building sites,as well as basement and foundation excavation for apartment blocks and other buildings.

Blast Hole Drilling

Common applications include aggregate production for costruction stabilization,cement production in limestone quarries and open pit mining.

Model: LUY150-15
Working pressure (bar) Flow 
(m3/min)
Noise sound level 
(at 7m distance, dBA)
Fuel tank capaticy(L) Compressor oil capaticy (L) Outlet valves
(qty; size)
15 15 83±3 250 32 1*G3/4 1*G2
Engine
Engine maker Engine model Engine power(kW) Norminal engine speed(rpm) Unloading engine speed(rpm) Engine inspiration
Yuchai YC6A205-H300 151 2050 1200 torbue charger
Dimension&Weight
Box mounted
Length(mm) Width(mm) Height(mm) Weight(mm)    
2680 1660 1637 2350    
With undercarriage, adjustable 2 bar horizontally
Length(mm) Width(mm) Height(mm) Weight(kg)    
4322 1950 1980 2550    

Company Profile
HangZhou CHINAMFG Drilling Equipment Co., Ltd. mainly provides holistic drilling solutions, serving the mining, stone crushing, water conservancy drilling industry, to help you solve the problem of drilling at high efficiency and low cost. We mainly provide mobile air compressors, drilling rigs, hammer, drill bit, crushers, underground water detector.We are your trustworthy partner.

FAQ
1.Is it difficult to operate and make the graph?
The instrument is easy to operate and we will send you the detailed operation manual via email.
The detector directly mapping with 1 button, no need computer drawing mapping.

2.What is the accuracy?
Our natural electric field instruments have been made for more than 10 years, with advanced technology and market test. We have obtained many invention patents. Our customer feedback rate reaches 100%. Accuracy over 95%.
3.How about after-sales service?
2 year warranty.Free data service for life.The professional geologist give the suggestions and 24hours online.

 

Lubrication Style: Oil-free
Cooling System: Water Cooling
Power Source: AC Power
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How are air compressors utilized in the aerospace industry?

Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

1. Aircraft Systems:

Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

2. Ground Support Equipment:

Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

3. Component Testing:

Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

4. Airborne Systems:

In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

5. Environmental Control Systems:

Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

6. Engine Testing:

In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

7. Oxygen Systems:

In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

air compressor

What is the impact of altitude on air compressor performance?

The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:

1. Decreased Air Density:

As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.

2. Reduced Airflow:

The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.

3. Decreased Power Output:

Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.

4. Extended Compression Cycle:

At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.

5. Pressure Adjustments:

When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.

6. Compressor Design:

Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.

7. Maintenance Considerations:

Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.

When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.

air compressor

What are the safety considerations when operating an air compressor?

Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:

1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.

2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.

3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.

4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.

5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.

6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.

7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.

8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.

9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.

10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.

By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.

China manufacturer Energy Efficient 11kw 15HP Screw Type Oil Free Air Compressor   air compressor priceChina manufacturer Energy Efficient 11kw 15HP Screw Type Oil Free Air Compressor   air compressor price
editor by CX 2023-10-10

China best CHINAMFG 50L Air Tank Air Compressor Machines Silent Oil-Free Air Compressor air compressor for car

Product Description

MODEL

POWER

TANK

PRESSURE

SPEED

AIR DELIVERY

WEIGHT

DIMENSIONS

w

liter/gallon

bar/psi

rpm

L/min

kg

mm

BW-600-9L

550

9/2.38

8/115

1420

110

15

480*215*480

BW-800-24L

750

24/6.5

8/115

1420

145

20

535*275*565

BW-600H2-50L

550*2

50/13.2

8/115

1420

220

35

    695*345*580

BW-800H3-100L

750*3

100/26.5

8/115

1420

435

83

1070*400*690

Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Horizontal
Structure Type: Closed Type
Compress Level: Multistage
Customization:
Available

|

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

How are air compressors employed in the mining industry?

Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:

1. Exploration and Drilling:

Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.

2. Ventilation and Air Quality Control:

Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.

3. Material Conveyance:

In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.

4. Dust Suppression:

Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.

5. Instrumentation and Control:

Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.

6. Explosive Applications:

In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.

7. Maintenance and Repair:

Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.

It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.

By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China best CHINAMFG 50L Air Tank Air Compressor Machines Silent Oil-Free Air Compressor   air compressor for carChina best CHINAMFG 50L Air Tank Air Compressor Machines Silent Oil-Free Air Compressor   air compressor for car
editor by CX 2023-10-10

China factory Zr81kce-Tfd-522 Zr81kce-Tfd-522 CHINAMFG 6.8HP Air Condition Scroll Compressor Zr81kce-Tfd-522 R407c Refrigeration Cooler Parts air compressor for car

Product Description

 

 

 

R22 50HZ  SPEC.
Model Power(HP) Displacement(m³/h) ARI Weight(KG) Height(MM) (Including shock-absorbing strap)
Capacity(W) Input Power(W)
One-Phase(220V-240V)
ZR28K3-PFJ 2.33 6.83 6900 2520 26 383
ZR34K3-PFJ 2.83 8.02 8200 2540 29 406
ZR34KH-PFJ 2.83 8.02 8200 2540 29 406
ZR36K3-PFJ 3 8.61 8900 2730 29 406
ZR36KH-PFJ 3 8.61 8900 2730 29 406
ZR42K3-PFJ 3.5 9.94 15710 3140 30 419
ZR47K3-PFJ 3.92 11.02 11550 3460 32 436
Three-Phase(380V-420V)
ZR28K3-TFD 2.33 6.83 6900 2140 25 383
ZR34K3-TFD 2.83 8.02 8200 2500 28 406
ZR34KH-TFD 2.83 8.02 8200 2470 28 406
ZR36K3-TFD 3 8.61 8790 2680 29 406
ZR36KH-TFD 3 8.61 8300 2680 28 406
ZR42K3-TFD 3.5 9.94 15710 3100 28 419
ZR47KC-TFD 3.92 11.16 11550 2430 30 436
VR61KF-TFP-542 5.08 14.37 14900 4636 28.5 436
ZR61KC-TFD 5.08 14.37 14600 4430 37 457
ZR61KH-TFD 5.08 14.37 14972 4440 35.9 457
ZR68KC-TFD 5.57 16.18 16900 4950 39 457
ZR72KC-TFD 6 17.06 17700 5200 39 457
ZR81KC-TFD 6.75 19.24 19900 5800 40 462
 
VR94KS-TFP 8 22.14 23300 6750 57 497
VR108KS-TFP 9 25.68 26400 7500 63 552
VR125KS-TFP 10 28.81 31000 9000 63 552
VR144KS-TFP 12 33.22 35000 15710 63 552
VR160KS-TFP 13 36.37 38400 11400 65 572
VR190KS-TFP 15 43.34 46300 13700 66 572
ZR250KC-TWD 20 56.57 60000 17700 142 736
ZR310KC-TWD 25 71.43 74000 22000 160 725
ZR380KC-TWD 30 57.5 92000 26900 176 725
ZR81KC-TFD 6.75 19.24 19900 5800 40 462
 
VR94KS-TFP 8 22.14 23300 6750 57 497
VR108KS-TFP 9 25.68 26400 7500 63 552
VR125KS-TFP 10 28.81 31000 9000 63 552
VR144KS-TFP 12 33.22 35000 15710 63 552
VR160KS-TFP 13 36.37 38400 11400 65 572
VR190KS-TFP 15 43.34 46300 13700 66 572
 
ZR250KC-TWD 20 56.57 60000 17700 142 736
ZR310KC-TWD 25 71.43 74000 22000 160 725
ZR380KC-TWD 30 57.5 92000 26900 176 725

 

TECHNICAL DATA
Model ZB15KQ ZB19KQ ZB21KQ ZB26KQ ZB29KQ ZB38KQ ZB45KQ
ZB15KQE ZB19KQE ZB21KQE ZB26KQE ZB29KQE ZB38KQE ZB45KQE
Motor Type TFD TFD TFD TFD TFD TFD TFD
PFJ PFJ PFJ PFJ PFJ    
Power(HP) 2 2.5 3 3.5 4 5 6
Displacement(m³/h) 5.92 6.8 8.6 9.9 11.4 14.5 17.2
               
Starting Current(LRA)              
TFD 24.5-26 30-32 36-40 41-46 50 58.6-65.5 67-74
PFJ 53-58 56-61 75-82 89-97 113    
               
Rated Load Current(RLA)              
TFD 4.3 4.3 5.7 7.1 7.9 8.9 11.5
PFJ 11.4 12.9 16.4 18.9 19.3    
               
Max. Operating Current(MCC)              
TFD 6 6 8 10 11 12.5 16.1
PFJ 16 18 23 24 27    
Motor Run 40μF/370V 40μF/370V 55μF/370V 60μF/370V 60μF/370V    
Crankcase Heater Power(W) 70 70 70 70 70 70 70
               
Size of Connecting Pipe(INCH)              
Outer Diameter of Wxhaust Pipe 1/2 1/2 1/2 1/2 1/2 1/2 1/2
Outer Diameter of Suction Pipe 3/4 3/4 3/4 3/4 7/8 7/8 7/8
               
Dimensions(MM)              
Length 242 242 243 243 242 242 242
Width 242 242 244 244 242 242 242
Height 383 383 412 425 430 457 457
Foot Bottom Installation Dimensions(Aperture) 190X190(8.5) 190X190(8.5) 190X190(8.5) 190X190(8.5) 190X190(8.5) 190X190(8.5) 190X190(8.5)
Fuel Injection(L) 1.18 1.45 1.45 1.45 1.89 1.89 1.89
               
Weight(KG)              
Net.W 23 25 27 28 37 38 40
Gross.W 26 29 30 31 40 41 44

 

TECHNICAL DATA
Model ZB48KQ ZB58KQ ZB66KQ ZB76KQ ZB88KQ ZB95KQ ZB114KQ
ZB48KQE ZB58KQE ZB66KQE ZB76KQE
Motor Type TFD TFD TFD TFD TFD TFD TFD
             
Power(HP) 7 8 9 10 12 13 15
Displacement(m³/h) 18.8 22.1 25.7 28.8 38.2 36.4 43.4
               
Starting Current(LRA) 101 86-95 100-111 110-118 110-118 140 174
               
Rated Load Current(RLA) 12.1 16.4 17.3 19.2 22.1 22.1 27.1
               
Max. Operating Current(MCC) 17 23 24.2 26.9 31 31 39
Crankcase Heater Power(W) 70 90 90 90 90    
               
Size of Connecting Pipe(INCH)              
Outer Diameter of Wxhaust Pipe 3/4 7/8 7/8 7/8 7/8 7/8 7/8
Outer Diameter of Suction Pipe 7/8 11/8 13/8 13/8 13/8 13/8 13/8
               
Dimensions(MM)              
Length 242 263.6 263.6 263.6 263.6 242 264
Width 242 284.2 284.2 284.2 284.2 285 285
Height 457 477 546.1 546.1 546.1 522 553
Foot Bottom Installation Dimensions(Aperture) 190X190(8.5) 190X190(8.5) 190X190(8.5) 190X190(8.5) 190X190(8.5) 190X190(8.5) 190X190(8.5)
Fuel Injection(L) 1.8 2.51 2.25 3.25 3.25 3.3 3.3
               
Weight(KG)              
Net.W 40 59.87 60.33 65.32 65.32 65 65
Gross.W 44            

Archean refrigeration has been focusing on the refrigeration industry for more than 10 years. The compressors are sold all over the world and have been well received. The company has accumulated strong experience in the compressor market, rich technical support, and a satisfactory one-stop procurement solution. You can rest assured You don’t need to worry about this series, from placing an order to receiving the goods. We provide a complete solution to serve customers well, which is our purpose of hospitality.

 

Installation Type: Movable Type
Lubrication Style: Lubricated
Cylinder Position: Vertical
Model: Zr81kce-Tfd-522
Transport Package: Wooden/Cartoon Box
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can air compressors be used for painting and sandblasting?

Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:

Painting:

Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:

  • Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
  • Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
  • Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.

Sandblasting:

Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:

  • Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
  • Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
  • Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.

When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.

Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.

air compressor

What is the energy efficiency of modern air compressors?

The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:

Variable Speed Drive (VSD) Technology:

Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.

Air Leakage Reduction:

Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.

Efficient Motor Design:

The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.

Optimized Control Systems:

Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.

Air Storage and Distribution:

Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.

Energy Management and Monitoring:

Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.

It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.

Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.

air compressor

What are the different types of air compressors?

There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:

1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.

2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.

3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.

4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.

5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.

6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.

These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.

China factory Zr81kce-Tfd-522 Zr81kce-Tfd-522 CHINAMFG 6.8HP Air Condition Scroll Compressor Zr81kce-Tfd-522 R407c Refrigeration Cooler Parts   air compressor for carChina factory Zr81kce-Tfd-522 Zr81kce-Tfd-522 CHINAMFG 6.8HP Air Condition Scroll Compressor Zr81kce-Tfd-522 R407c Refrigeration Cooler Parts   air compressor for car
editor by CX 2023-10-09

China Hot selling 92c Viair Camper Recover Truck 100c Motorcycle 12VDC Air Compressor air compressor parts

Product Description

MODEL A92C NAME Air Suspesion Compressor
TYPE Light Duty Onboard Air Compressor CERTIFICATE CE, ROHS
DUTY CYCLE 9% @ 100PSI COLOR Chrome
FLOW RATE 1.03CFM @ 0PSI SIZE 16*8*13cm
WORKING PRESSURE 120PSI G.W. 2.5kg
INTERMITTENT PRESSURE 220PSI MOQ 100PCS
VOLTAGE 12V DC PORT HangZhou, China
AMPERAGE 9A BRAND   ALITAIR

Accessories:

> Mounting hardwares (nuts, bolts, locking washers)

> Vibration isolators

> Remote mount air filter assembly

> 2 replacement air filter elements

> Air line for remote mount air filter

> Stainless steel braided leader hose

> Check valve

After-sales Service: Yes
Warranty: Yes
Material: Aluminum
Certification: ISO10012, BSCI, GMP, GSV, ISO13485, OHSAS18001, ISO14001, ISO/TS16949, ISO9001
Car Make: Volkswagen, WuLing, Benz, BMW, Hyundai, Honda, Toyota, Jeep, Nissan, Ford, Buick, Chery, Chevrolet, Cadillac, Geely, Roewe, Audi, Peugeot, Lexus, Volvo, Mazda, Kia
Position: Rear
Customization:
Available

|

air compressor

How are air compressors utilized in the aerospace industry?

Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

1. Aircraft Systems:

Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

2. Ground Support Equipment:

Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

3. Component Testing:

Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

4. Airborne Systems:

In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

5. Environmental Control Systems:

Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

6. Engine Testing:

In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

7. Oxygen Systems:

In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

air compressor

What is the role of air compressors in manufacturing and industrial processes?

Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:

1. Pneumatic Tools and Equipment:

Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.

2. Automation and Control Systems:

Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.

3. Air Blowing and Cleaning:

Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.

4. Air Separation and Gas Generation:

Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.

5. HVAC Systems:

Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.

6. Air Compression for Storage and Transport:

Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.

7. Process Instrumentation:

Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.

8. Material Handling and Pneumatic Conveying:

In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.

Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.

air compressor

What is the purpose of an air compressor?

An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:

1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.

2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.

3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.

4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.

5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.

6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.

Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.

China Hot selling 92c Viair Camper Recover Truck 100c Motorcycle 12VDC Air Compressor   air compressor partsChina Hot selling 92c Viair Camper Recover Truck 100c Motorcycle 12VDC Air Compressor   air compressor parts
editor by CX 2023-10-09